Friday, December 24, 2010
2.4.4. Radio
Radios transmit and receive communications at various preset frequencies. Radio waves carry the signals heard on AM and FM radio, as well as the signals seen on a television set receiving broadcasts from an antenna. Radio is used mostly as a public medium, sending commercial broadcasts from a transmitter to anyone with a radio receiver within its range, so it is known as a point-to-multipoint medium. However, radio can also be used for private point-to-point transmissions. Two-way radios, cordless telephones, and cellular radio telephones are common examples of transceivers, which are devices that can both transmit and receive point-to-point messages.
Personal radio communication is generally limited to short distances (usually a few kilometers), but powerful transmitters can send broadcast radio signals hundreds of kilometers. Shortwave radio, popular with amateur radio enthusiasts, uses a range of radio frequencies that are able to bounce off the ionosphere. This electrically charged layer of the atmosphere reflects certain frequencies of radio waves, such as shortwave frequencies, while allowing higher-frequency waves, such as microwaves, to pass through it. Amateur radio operators use the ionosphere to bounce their radio signals to other radio operators thousands of kilometers away.
In a broadcast system, the central high-powered broadcast tower transmits a high-frequency electromagnetic wave to numerous low-powered receivers. The high-frequency wave sent by the tower is modulated with a signal containing visual or audio information. The receiver is then tuned so as to pick up the high-frequency wave and a demodulator is used to retrieve the signal containing the visual or audio information. The broadcast signal can be either analogue (signal is varied continuously with respect to the information) or digital (information is encoded as a set of discrete values).
The broadcast media industry is at a critical turning point in its development, with many countries moving from analogue to digital broadcasts. This move is made possible by the production of cheaper, faster and more capable integrated circuits. The chief advantage of digital broadcasts is that they prevent a number of complaints with traditional analogue broadcasts. For television, this includes the elimination of problems such as snowy pictures, ghosting and other distortion. These occur because of the nature of analogue transmission, which means that perturbations due to noise will be evident in the final output. Digital transmission overcomes this problem because digital signals are reduced to discrete values upon reception and hence small perturbations do not affect the final output. In a simplified example, if a binary message 1011 was transmitted with signal amplitudes [1.0 0.0 1.0 1.0] and received with signal amplitudes [0.9 0.2 1.1 0.9] it would still decode to the binary message 1011 — a perfect reproduction of what was sent. From this example, a problem with digital transmissions can also be seen in that if the noise is great enough it can significantly alter the decoded message. Using forward error correction a receiver can correct a handful of bit errors in the resulting message but too much noise will lead to incomprehensible output and hence a breakdown of the transmission.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment